Jayson's WebPage ™
HOME
BLOGS
WEB DESIGN
PROGRAMMING
CONSULTING
HOSTING SERVICES
NETWORK SERVICES
COMMUNICATIONS
HARDWARE REPAIR
WEB DESIGN TOOLS
FireWorks
DreamWeaver
Panic Coda
Photoshop
FireBug
PROGRAMMING LANGUAGE
C (programming language)
C++
Fortran
Visual Basic
Visual Basic .NET
MANY MORE
VIDEO TUTORIALS
HARDWARE REPAIR
PROGRAMMING
Computer Programming
Computer programming
(often shortened to programming) is the comprehensive process that leads from an original formulation of a computing problem to executable programs. It involves activities such as analysis, understanding, and generically solving such problems resulting in an algorithm, verification of requirements of the algorithm including its correctness and its resource consumption, implementation (or coding) of the algorithm in a target programming language, testing, debugging, and maintaining the source code, implementation of the build system and management of derived artefacts such as machine code of computer programs. The algorithm is often only represented in human-parseable form and reasoned about using logic. Source code is written in one or more programming languages (such as C++, C#, Java, Python, Smalltalk, JavaScript,etc.). The purpose of programming is to find a sequence of instructions that will automate performing a specific task or solve a given problem. The process of programming thus often requires expertise in many different subjects, including knowledge of the application domain, specialized algorithms and formal logic.
Within software engineering, programming (the implementation) is regarded as one phase in a software development process.
There is an on-going debate on the extent to which the writing of programs is an art form, a craft, or an engineering discipline. In general, good programming is considered to be the measured application of all three, with the goal of producing an efficient and evolvable software solution (the criteria for "efficient" and "evolvable" vary considerably). The discipline differs from many other technical professions in that programmers, in general, do not need to be licensed or pass any standardized (or governmentally regulated) certification tests in order to call themselves "programmers" or even "software engineers." Because the discipline covers many areas, which may or may not include critical applications, it is debatable whether licensing is required for the profession as a whole. In most cases, the discipline is self-governed by the entities which require the programming, and sometimes very strict environments are defined (e.g. United States Air Force use of AdaCore and security clearance). However, representing oneself as a "Professional Software Engineer" without a license from an accredited institution is illegal in many parts of the world.
Another on-going debate is the extent to which the programming language used in writing computer programs affects the form that the final program takes. This debate is analogous to that surrounding the Sapir–Whorf hypothesis in linguistics and cognitive science, which postulates that a particular spoken language's nature influences the habitual thought of its speakers. Different language patterns yield different patterns of thought. This idea challenges the possibility of representing the world perfectly with language, because it acknowledges that the mechanisms of any language condition the thoughts of its speaker community
Programming languages
Different programming languages support different styles of programming (called programming paradigms). The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Ideally, the programming language best suited for the task at hand will be selected. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. It is usually easier to code in "high-level" languages than in "low-level" ones. Allen Downey, in his book How To Think Like A Computer Scientist, writes:
The details look different in different languages, but a few basic instructions appear in just about every language:
Input:
Gather data from the keyboard, a file, or some other device.
Output:
Display data on the screen or send data to a file or other device.
Arithmetic:
Perform basic arithmetical operations like addition and multiplication.
Conditional:
Execution: Check for certain conditions and execute the appropriate sequence of statements.
Repetition:
Perform some action repeatedly, usually with some variation.
Many computer languages provide a mechanism to call functions provided by shared libraries. Provided the functions in a library follow the appropriate run time conventions (e.g., method of passing arguments), then these functions may be written in any other language.
Walang komento:
Mag-post ng isang Komento
Home
Mag-subscribe sa:
Mga Post (Atom)
Walang komento:
Mag-post ng isang Komento